ADAPT Parasol

www.eurovent-certification.com www.certiflash.com

Энергосберегающий комфортный модуль для систем вентилирования по потребности Swegon WISE

- Комфортный модуль для систем вентилирования по потребности и системы WISE от Swegon
- Энергоэффективная работа: вентиляция, обогрев и охлаждение точно по потребности - ни больше и ни меньше
- Максимальный комфорт с возможностью индивидуального управления аппаратом или помещением
- Водяное охлаждение, а также водяной или электрический обогрев
- Внутренний климат без сквозняка: 4-стороннее распределение воздуха и устройство Swegon ADC^{II} (Anti Draught Control) обеспечивают максимальную адаптивность системы к настоящим и будущим требованиям помещения
- Простой монтаж, запуск и обслуживание. Все компоненты и принадлежности аппарата встроены на заводе.

Расход первичного воздуха: До 85 l/s

Давление: от 50 до 150 Ра

Холодопроизводительность

- общая: До 2055 W

Теплопроизво-

дительность: Вода: До 2700 W

Эл.: До 1000 W

Размеры: 600 и 1200 с приспосо-

блениями для различных потолочных систем

Комфортный модуль ADAPT Parasol

ADAPT Parasol - это стандартный комфортный модуль Parasol, но со встроенными функциями управления климатом помещения по потребности.

Размеры: 600x600; 600x1200

Функции: Вентиляция и охлаждение

Вентиляция, охлаждение и

обогрев (вода)

Вентиляция, охлаждение и обогрев (электрический)

Тип монтажа: Встраиваемый в подвесной потолок

Функции

Основные функции комфортных модулей аналогичны функциям климатических балкок. Главное отличие модулей - 4-стороннее распределение воздуха вместо 2-стороннего. Смешивание воздуха на большей площади позволяет аппарату, занимая небольшое место на потолке, работать с большой холодо- и теплопроизводительностью. Конструкция модулей делает возможным быстрое и равномерное смешивание чистого первичного воздуха с воздухом помещения, создавая в нем комфортный климат. В режиме обогрева эта технология позволяет лучше распределить тепло в помещении.

Управление климатом по потребности

С управлением по потребности помещение вентилируется обогревается/охлаждается ровно столько, сколько нужно - ни больше и ни меньше. Это - значительный потенциал экономии энергии в помещениях с низким уровнем присутствия или с переменными нагрузками, что соответствует множеству помещений. Например, уровень присутствия в офисных помещениях часто не выше 50%!

Гибкая система

Легко регулируемые форсунки, в комбинации с устройством Swegon ADC^{II} (Anti Draught Control), позволяют создать максимально адаптивную систему, не зависящую от формы помещения. Каждая из 4-х сторон аппарата может настраиваться на собственный расход воздуха и рисунок его распределения.

Дизайн

Можно выбрать один из трех разных узоров перфорации лицевой панели Parasol. Стандартным является: круглые отверстия в треугольном рисунке.

Комфорт в помещении

Распределяя холодный воздух в четырех направлениях, мы получаем максимальную зону его смешивания, на практике означающую, что в зону обслуживания поступает воздух комфортной скорости и температуры. Так мы избегаем неприятного движения охлажденного воздуха, называемого холодным сквозняком. Особая конструкция выпускных отверстий/форсунок воздуха создает турбулентный поток, который обеспечивает быстрое смешивание охлажденного воздуха с воздухом помещения. Закрытая конструкция с решеткой рециркуляции для всасывания воздуха помещения на лицевой панели модуля также способствует хорошему смешиванию.

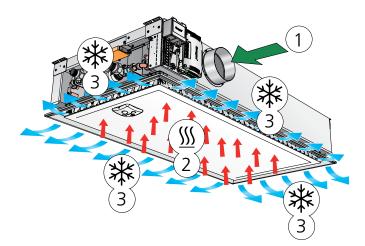
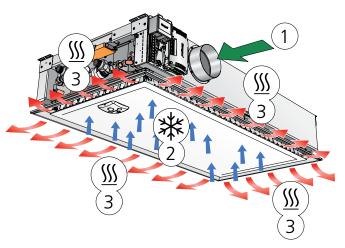
Модели

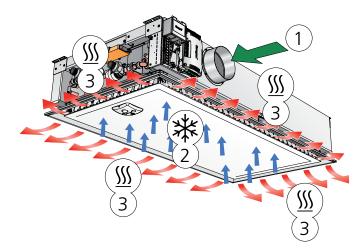
Доступны следующие модели ADAPT Parasol, отличающиеся исполнением теплообменника:

Вариант А: Вентиляция и охлаждение (теплообменниквода)

Вариант В: Вентиляция, охлаждение и обогрев (теплообменники-вода)

Вариант Х: Вентиляция, охлаждение (теплообменниквода) и обогрев (ТЭН в теплообменнике).


Рис. 1. Вариант А: Функция: охлаждение и вентиляция

- 1 = Первичный воздух
- 2 = Рециркуляционный воздух
- 3 = Первичный воздух, смешанный с охлажденным воздухом помещения

Рис. 3. Вариант X: Функция обогрева с ТЭНом (включает также функцию охлаждения)

- 1 = Первичный воздух
- 2 = Рециркуляционный воздух
- 3 = Первичный воздух, смешанный с подогретым воздухом помещения

Рис. 2. Вариант В: Функция обогрева и вентиляции (включает также функцию охлаждения)

- 1 = Первичный воздух
- 2 = Рециркуляционный воздух
- 3 = Первичный воздух, смешанный с подогретым воздухом помещения

Компактные аппараты с автоматикой

ADAPT Parasol поставляется как компактный аппарат со встроенной воздушной заслонкой и оборудованием управления, подключаемый к электропитанию и, возможно, к общей системе диспетчеризации здания.

Модуль датчиков, состоящий из датчика присутствия и датчика температуры, по умолчанию размещен на лицевой панели. Однако может быть заказан как принадлежность, для монтажа на стене.

Встроенное интеллектуальное управление с возмоностью различной конфигурации (настройки функций) делает аппарат гибким и перспективным.

Например, каждый аппарат может быть master или slaveэто решается выбором параметров и обеспечивает минимум дополнительных работ при, например, перепланировке офиса - из открытого типа на кабинеты.

ADAPT Parasol PlusFlow

При одновременной потребности в высокой мощности охлаждения и большом расходе воздуха применяется Parasol 1200 PF. Модуль Parasol PF, устанавливаемый, например, в конференцзале, позволяет уменьшить число монтируемых продуктов до 50%.

Модуль справляется с большими расходами воздуха и при этом обеспечивает такую же холодо- и теплопроизводительность, как и стандартный модуль, поддерживая, безусловно, высокий уровень комфорта в помещении.

Высокая производительность

Благодаря высокой охлаждающей способности, Parasol обеспечивает охлаждение помещения, занимая площадь потолка на 40-50% меньше, чем при использовании обычных климатических балок.

Простота регулирования

С помощью встроенной регулировки форсунок со множеством вариантов настроек, ADAPT Parsol может быть легко перенастроен под измененный размер помещения или характер деятельности в нем, всегда обеспечивая оптимальный комфорт.

Применение

Parasol идеален как стандартное решение для использования в таких помещениях как:

- Офисы и конференц-залы
- Учебные помещения
- Гостиницы
- Рестораны
- Больницы
- Магазины
- Торговые центры

Простота монтажа

Малогабаритные и компактные модули ADAPT Parasol идеальны для модульных конструкций потолков, что также упрощает их монтаж. Небольшие габариты важны при монтажных работах, особенно на строительных площадках, поскольку это снижает вероятность повреждений, вызываемых транспортировкой, и повышает технику безопасности.

Гибкость системы

Ассортимент аппаратов предусматривает их монтаж в потолки с-с 600, 625 и 675 мм. Также имеется монтажная рама для оштукатуренных потолков и подвесных потолков, таких как Dampa и FineLine.

Всегда на складе

Чтобы гарантировать быструю доставку ADAPT Parasol, аппараты стандартного исполнения с наиболее употребляемыми функциями имеются на складе.

Все компоненты аппарата могут быть смонтированы на заводе

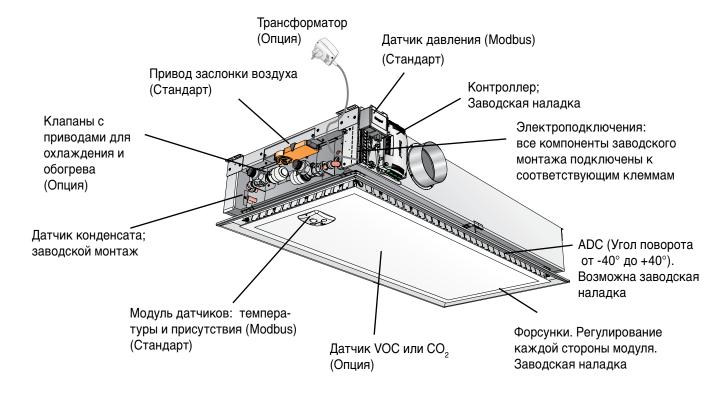
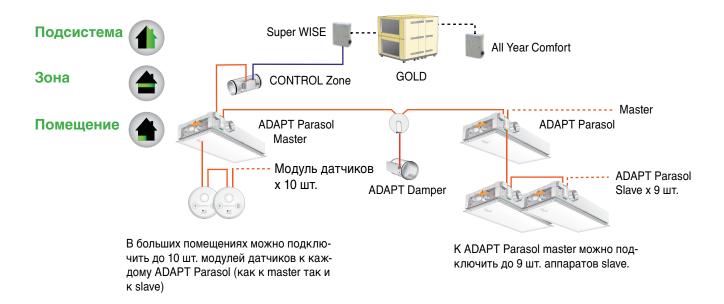



Рис. 4. Все компоненты аппарата могут быть смонтированы на заводе

Puc. 5. ADAPT Parasol как часть системы WISE

Часть системы WISE

ADAPT Parasol - это часть системы управления переменным расходом воздуха Swegon WISE.

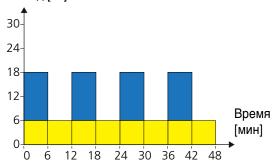
ADAPT Parasol коммуницирует с другими продуктами через устройство связи Super WISE, которое с помощью Modbus RTU связывает все компоненты системы WISE до агрегата GOLD.

ADAPT Parasol поддерживает постоянное давление в форсунках, что означает контролируемую длину струи, высокую эффективность и Coanda эффект распределяемого воздуха независимо от режима работы.

Заслонка зоны CONTROL Zone поддерживает постоянное давление в своей зоне.

Функция ECOPulse

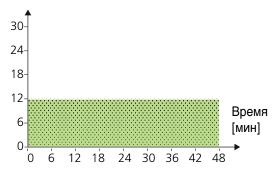
В ADAPT Parasol устанавливается 2 значения расхода воздуха - мининимальный и максимальный. Функция ECOPulse (стандарт) подсчитывает, сколько времени заслонка будет закрыта (мин расход) и сколько будет открыта (макс расход), для определения желаемого расхода в режиме присутствия.


Пример:

Макс. расход (18 l/s); желаемый расход присутствия (12 l/s); мин. расход (6 l/s).

В этом примере расход распределяется 50/50, так как требуемый расход воздуха находится посередине между мин. и макс. его значением.

Последовательность, состоящая из периодов (мин. 6 минут), всегда начинается с периода максимального расхода, затем следует расчетное количество периодов мин. расхода, для нужного расхода воздуха в течение определенного времени.



Полная последовательность длится 48 минут. Затем начинается новая последовательность, следующие 48 минут, при условии отсутствия изменений в потребности комфорта (температуры, CO_2 , присутствия и т.д.)

Если мы распределим синие и желтые расходы воздуха во времени, получим желаемый расход 12 l/s.

Pасход [l/s]

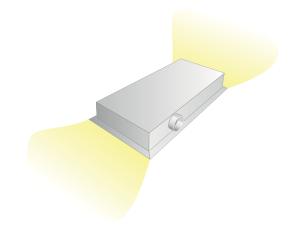


Рис. 6. Минимальный расход, отсутствие в помещении

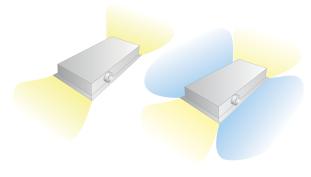
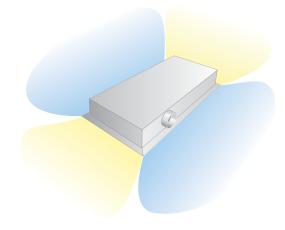



Рис. 7. Расход присутствия, комбинация мин. и макс. расходов

Рис. 8. Макс. расход, когда температура или ${\rm CO_2}$ превышают заданные значения

Базовая настройка форсунок

В примере выше, форсунки коротких сторон настроены так, чтобы при определенном давлении дать 6 l/s, что соответствует расходу в режиме отсутствия.

Форсунки длинных сторон настроены так, чтобы все 4 стороны вместе дали макс. расход 18 l/s.

В ProSelect можно выбрать различные варианты настройки форсунок для максимальной экономии расхода в режиме отсутствия и получения максимального комфорта в режиме присутствия.

Функции регулирования

Независимо от заводской конфигурации ADAPT Parasol, во время наладки или последующей эксплуатации можно изменить функцию регулирования на один из следующих вариантов:

ECOPulse

ECOPulse - поддержание заданного расхода воздуха в режиме присутствия путем закрытия (мин. расход) и открытия (макс. расход) регулирующей заслонки в течении определенного периода времени, см. стр. 7.

Переменный расход (VAV)

Конфигурация форсунок ADAPT Parasol соответствует мин. и макс. расходу воздуха, как в случае с функцией EcoPulse. Однако, функция Переменный расход (VAV) поддерживает точный расход воздуха в течении всего периода времени.

С функцией Переменный расход (VAV), при расходе воздуха между мин. и макс. значениями, производительность модуля ниже по сравнению с функцией ECOPulse.

Пример работы функции: мин. расход 5 l/s, желаемый расход присутствия 20 l/s и макс. расход 35 l/s.

В режиме присутствия увеличение до макс. расхода воздуха используется по потребности температуры или качества воздуха. В остальной период времени в помещение подается заданный расход воздуха присутствия.

2-шага

Ступенчатое регулирование расхода воздуха (отсутствие/присутствие).

Отсутствие = мин.расход 5 l/s.

Присутствие = макс.расход = 35 l/s , если конфигурация заслонок выполнена в соответствии с предыдущим примером.

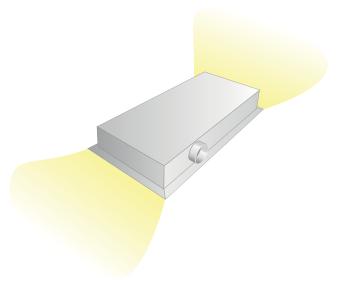
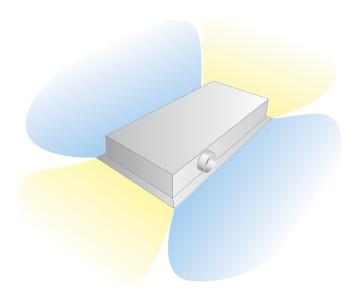



Рис. 9. Минимальный расход. Отсутствие людей в помещении

Рис. 10. Расход воздуха в режиме присутствия/макс. расход для функции «2-шага».

Для функции Переменный расход (VAV) регулирование расхода воздуха на длинных сторонах модуля осуществляется плавно между мин. - присутствие - макс. расходами воздуха.

Режимы работы

Контроллер настраивает аппарат на любой из возможных режимов, исходя из сигналов подключенных датчиков.

Режимы работы определяются присутствием в помещении, статусом используемых датчиков или сигналом от главной системы управления.

Режимы работы

- Режим присутствия
- Режим отсутствия
- Отпуск
- Резерв, режим ожидания
- Аварийный режим
- Режим наладки
- Летнее ночное охлаждение

Режим присутствия

Когда ADAPT Parasol получает сигнал о присутствии в помещении (датчик присутствия), приводы клапанов теплой/холодной воды управляются к заданной в этом режиме температуре обогрева/охлаждения. Расход воздуха управляется к заданному значению присутствия, но в зависимости от датчиков: конденсата, температуры, качества воздуха, оконного контакта, если таковые имеются.

Режим отсутствия

В режиме отсутствия система автоматически переключается в режим экономии энергии. Система возвращается обратно в режим присутствия и к нормальной работе по сигналу о регистрации присутствия. В режиме экономии/отсутствия приводы клапанов воды по- прежнему управляются от датчиков в помещении, но климату позволяется быть менее комфортным. Расход воздуха заданный - минимальный.

Отпуск (энергосберегающий режим)

В режиме Отпуск система автоматически переключается в режим экономии энергии, как в случае с режимом отсутствия. Отличие состоит в более широком диапазоне отклонения температуры.

Переключение в режим Отпуск выполняется системой управления, подключенной к системе BMS здания через Modbus RTU.

Резерв (stand-by), режим ожидания

При срабатывании оконного контакта контроллер переключается в режим ожидания. При закрытии окна система возвращается в режим присутствия. В режиме ожидания контроллер поддерживает температуру помещения выше 10°С (защита от замерзания).

Аварийный режим (Emergency mode)

В случае пожарной тревоги открывается или закрывается (в зависимости от наладки) заслонка в воздуховоде отработанного воздуха. В аварийном режиме (EMERG) охлаждение и обогрев выключены. Приточный воздух обычно выключен.

Аварийный режим может управляться только системой управления, подключенной к системе BMS здания через Modbus RTU.

Режим наладки

Функция первоначального открытия «First open» означает, что в период установки привод клапана полностью открыт, упрощая проверку водяной системы.

Через 6 минут после подачи напряжения функция автоматически отключается. При этом можно услышать щелчок, после чего привод переключается в положение NC =нормально закрыт (стандартное положение) и контроллер начинает работать.

Больше информации см. в описании модуля датчиков на стр. 12.

Ночное охлаждение летом (Night Cool)

Охлаждение помещения до заданной температуры прохладным наружным воздухом летней ночью.

Функция может быть активирована и деактивирована только из системы коммуникации Modbus RTU.

Функции

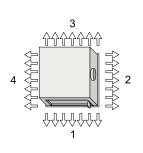
Тестирование клапанов

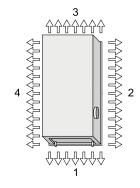
Все клапаны, подключенные к контроллеру, автоматически регулярно тестируется, чтобы избежать засорения или застревания. Во время тестирования клапаны открываются на макс. 6 минут и затем закрываются. Первыми тестируется клапаны охлаждения, затем обогрева.

Противозамерзание

Функция препятствует возможным повреждениям из-за переохлаждения аппарата. Если температура помещения опускается ниже 10°С, контроллер открывает клапан горячей воды.

Change over


Функция означает управление одним приводом клапана как для холодной, так и для теплой воды (двухтрубная система). Зимой, при потребности в обогреве помещения, клапан открывается, если вода в трубе теплее, чем заданное ее значение, защищая помещение от нежелательного охлаждения. Аналогично летом, при потребности в охлаждении.


Для работы функции требуется дополнительный датчик температуры на трубопроводе прямой воды в системе с непрерывной циркуляцией воды.

Конфигурация форсунок

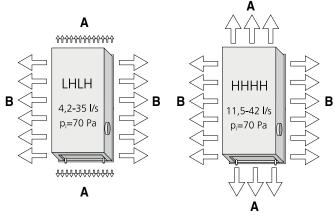

Оптимизированная конфигурация форсунок каждой стороны обозначается буквой. Начало отсчета (сторона 1) - сторона присоединения воды. Далее - против часовой стрелки - специфицируется каждая сторона отдельно, см. Рис. 11-12. Можно заказать определенную конфигурацию с завода (кроме складских аппаратов).

Рис. 11. ADAPT Parasol 600, вид сверху, стороны 1-4

Рис. 12. ADAPT Parasol 1200, вид сверху, стороны 1-4

Рис. 13. Пример 1 A = 2,1 l/s, B = 15,4 l/s

Рис. 14. Пример 2 A = 5,7 l/s, B = 15,25 l/s

Пример 1:

Конфигурация форсунок LHLH дает минимально возможный расход воздуха в режиме отсутствия (форсунки открыты на сторонах 1 и 3). Минимальный расход (отсутствие) 4,2 l/s и максимальный расход 35 l/s при низшем рекомендуемом давлении на форсунке p_i= 70 Pa.

Пример 2:

Если нужно получить максимально возможный расход/ производительность, конфигурация форсунок будет НННН (полностью открыты на всех сторонах). Более высокий максимальный расход означает, что в данном случае расход отсутствия также будет намного выше.

Приведенные выше примеры настроек одного и того же аппарата показывают большую гибкость ADAPT Parasol.

К-факторы для каждой стороны можно найти в таблице 2-5 либо в монтажных инструкциях на нашем сайте. Самый легкий способ быстро проверить различные варианты - расчет в программе ProSelect.

Регулирование форсунок

Уникальное встроенное управление форсунками в ADAPT Parasol позволяет настроить каждую из 4 сторон аппарата индивидуально. В зависимости от размещения аппарата и потребности в первичном воздухе в помещении, воздух может распределяться в требуемом направлении. Оптимизацию направления распределения воздуха легко выбрать с помощью нашей компьютерной прграммы ProSelect (www.swegon.com).

Конфигурация форсунок выполняется на заводе, но, при необходимости, может быть легко изменена на месте.

k-фактор

Каждое положение/конфигурация форсунок воздуха характеризуется определенным k-фактором (коэффициентом). Сумма k-факторов всех 4 сторон аппарата дает k-фактор аппарата в целом. Актуальный k-фактор для оптимизированной конфигурации форсунок можно получить в программе ProSelect.

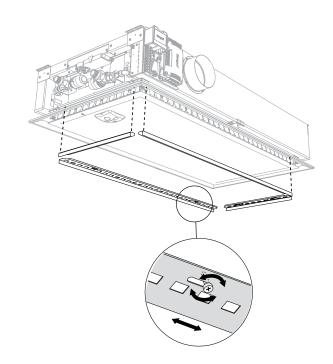


Рис. 15. Регулирование форсунок воздуха

Модуль датчиков

Модуль датчиков содержит датчик присутствия и датчик температуры в едином корпусе.

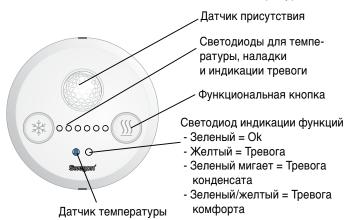
По умолчанию модуль размещен на лицевой панели ADAPT Parasol, но можно заказать принадлежность: выносной модуль датчиков для монтажа на стене или в стандартную коробку электроподключений.

Используя кнопки модуля датчиков, можно задать температуру помещения, выбрать режим наладки ADAPT Parasol и ознакомиться со списком тревог.

6 светодиодов в режиме нормальной работы указывают выбранный уровень температуры. В случае неисправности актуальная тревога видна в форме мигания определенных светодиодов, см. список тревог (стр.13).

Модуль датчиков подключается к контроллеру кабелем RJ12.

Зона действия модуля датчиков - 30 m² при высоте монтажа 2,7 m.


Регулировка температуры

Температура снижается нажатием левой кнопки

Температура повышается нажатием правой кнопки

Каждый светодиод соответствует одному градусу повышения или понижения заданной температуры.

Puc. 18. Компьютер подключается с помощью переходника CABLE CONVERTER USB-RJ12 (RS485), например, для наладки программных показателей

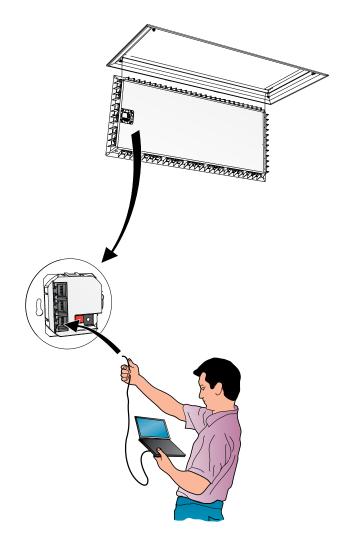
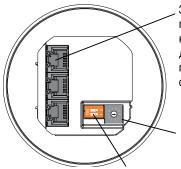
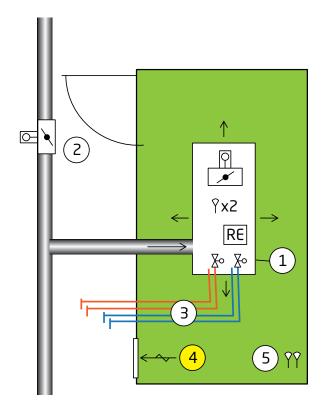



Рис. 16. Модуль датчиков, вид спереди

3 порта modbus RJ12 для подключения, например, контроллера, доп. модуля датчиков или компьютера с помощью переходника Cable converter USB-RJ12

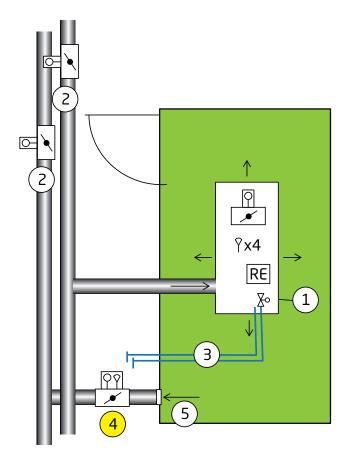
Адресация модуля датчиков.

К каждому устройству мастер можно подключить до 10 модулей датчиков со своим уникальным адресом


2013-05-14

Переключатель для терминирования. На последнем датчике в контуре должен быть установлен в положение 1

Рис. 17. Модуль датчиков, вид сзади



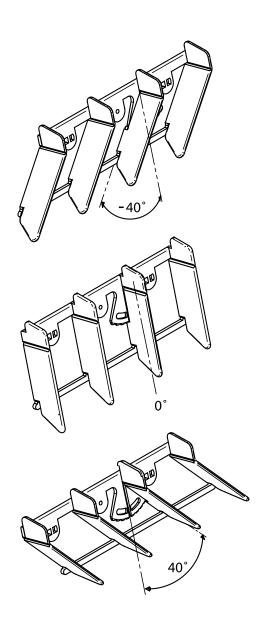
Примеры монтажа

Рис. 19. Типовое помещение 1. ADAPT Parasol в офисном помещении, вытяжка через переточную решетку (баланс в зоне)

- 1. Комфортный модуль ADAPT Parasol с функциями вентиляции, охлаждения и обогрева, включает:
- датчик давления
- датчик конденсата
- устройство коммуникации/контроллер
- заслонка с приводом
- 2. Зональная заслонка CONTROL Zone
- 3. Вода для охлаждения и обогрева
- 4. Переток в коридор
- 5. Выносной модуль датчиков (присутствие и температура)

Рис. 20. Типовое помещение 2.

ADAPT Parasol в офисном помещении. Баланс в помещении


- 1. Комфортный модуль ADAPT Parasol с функциями вентиляции и охлаждения, включает:
- датчик давления
- датчик присутствия
- датчик температуры
- датчик конденсата
- устройство коммуникации/контроллер
- заслонка с приводом
- 2. Зональная заслонка CONTROL Zone
- 3. Вода для охлаждения
- 4. Вытяжной воздух удаляется через заслонку ADAPT Damper (slave) принудительно управляемую ADAPT Parasol
- 5. Решетка или полностью открытый диффузор вытяжного воздуха, типа EXC

ADC^{II}

Комфортные модули стандартно снабжены противосквозняковым устройством ADC^{II} (Anti Draught Control), позволяющим изменять картину распределения воздуха. На каждой стороне аппарата имеются несколько секций ADC^{II}, с 4-мя направляющими воздуха в каждой секции. Возможные положения направляющих - от прямого до 40° вправо или влево, шагом 10°. Таким образом, с комфортными модулями мы получаем максимально гибкую систему без необходимости дополнительных затрат в нее или дополнительной ее наладки.

Наличие ADC^{II} не оказывает влияния на уровень шума или статическое давление. Производительность аппарата по воде снижается на 5-10% в положении Fan-shape.

Рис. 21. ADC", зона регулирования от -40° до +40°, шагом 10°

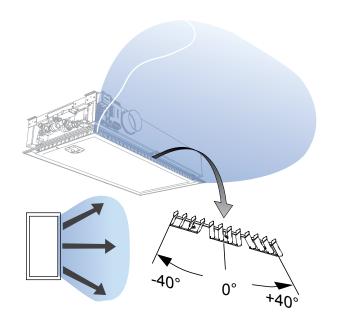
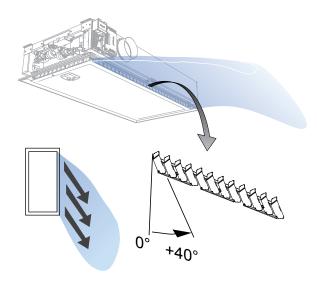
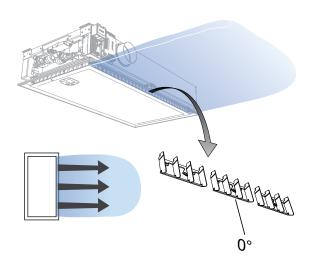




Рис. 22. Возможности настройки ADC", положение Fan-shape

Рис. 23. Возможности настройки ADC^{II}, положение X-shape

Рис. 24. Возможности настройки ADC^{II}, положение Прямо

Монтаж

Рекомендуемые типы потолков

Габариты ADAPT Parasol учитывают возможность размещения в большинстве систем Т-образных решетчатых потолков и потолков подвесного типа. В Т-образных системах рекомендуется применение Т-профиля шириной 24 mm.

Крепление

ADAPT Parasol имеет четыре монтажные точки для подвешивания с помощью резьбовых шпилек (Рис. 28). При большом расстоянии между аппаратом и точкой крепления следует использовать двойные шпильки с резьбовыми муфтами.

Шпильки (монтажная деталь SYST MS M6, Рис. 29) заказываются отдельно.

Размеры соединений

Вода

Без клапанов:

Холод, без резьбы на конце (Cu) \emptyset 12 x 1,0 mm Тепло, без резьбы на конце (Cu) \emptyset 12 x 1,0 mm

С клапанами, заводской монтаж:

Холод, наружная резьба	DN15 (1/2")
Тепло, наружная резьба	DN15 (1/2")

Воздух

 Соединительная манжета
 Ø 125 mm

 Соединительная манжета, вариант PF
 Ø 160 mm

Присоединение воздуха

Стандартно ADAPT Parasol поставляется с открытым соединением для воздуха на правой стороне аппарата (со стороны подключения воды).

Соединительная манжета воздуха прилагается отдельно для монтажа к аппарату и затем к воздуховоду первичного воздуха (Рис. 27) Левое присоединение воздуха заглушено, но присоединения при необходимости можно легко поменять местами.

Присоединение воды

Подсоедините водяную трубу с помощью с быстроразъемной муфты (push-on) или обжимной кольцевой муфты (если аппарат заказан без клапанов воды).

Не используйте пайку - высокая температура нарушит существующую пайку аппарата!

Гибкие соединительные шланги, как для гладких (безрезьбовых) соединений, так и для клапанов заводского монтажа, заказываются отдельно.

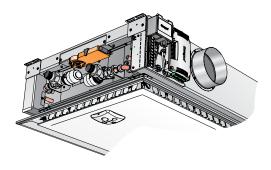
Сухое охлаждение

Модули комфорта работают без конденсации, поэтому не требуется никакой системы дренажа.

Подключение ТЭНа

Схема подключения имеется на нашем интернет сайте www.swegon.com

Защита от перегрева


АDAPT Parasol с электрообогревом оснащен двумя термическими защитами от перегрева. Защита с автоматическим восстановлением прерывает подачу напряжения к ТЭНу при температуре выше 60 °C. При снижении температуры до 50 °C защита снова замыкает цепь, подавая напряжение на ТЭН. Если температура повышается до 75 °C после того, как первая защита от перегрева разом-кнула цепь, срабатывает вторая защита с ручным восстановлением и прерывает подачу питания по фазовому проводу к нагревательному элементу.

Для восстановления защиты от перегрева сперва необходимо снять лицевую перфорированную панель, затем нажать красную кнопку, расположенную между теплообменником и торцевой панелью аппарата (сторона подсоединения холодной воды). После этого лицевая панель устанавливается на место.

СЕ-маркировка

ADAPT Parasol с электрообогревом имеет СЕ-маркировку согласно действующим требованиям. СЕ-декларация имеется на нашем сайте www.swegon.com.

Рис. 25. Подключения воды к клапанам заводского монтажа (на рисунке ADAPT Parasol 1200)

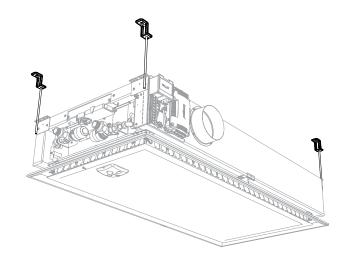
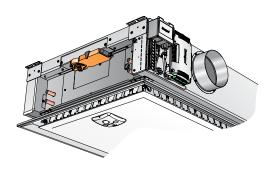
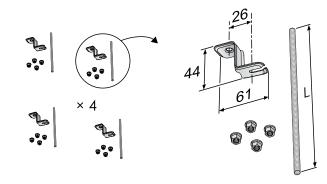




Рис. 28. Закрепление 2х модульного аппарата на 4х шпильках

Рис. 26. Подключения воды к безрезьбовым соединениям (на рисунке ADAPT Parasol 1200)

Рис. 29. Монтажная деталь SYST MS M6-1: крепление и шпилька

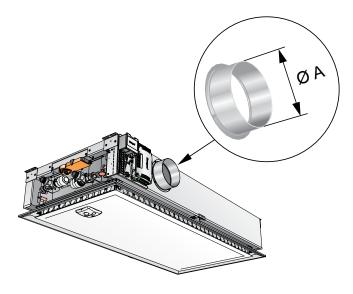
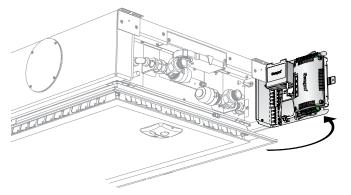



Рис. 27. Соединительная манжета-воздух

Варианты

ADAPT Parasol 600 A = \varnothing 125 mm ADAPT Parasol 600 PF A = \varnothing 160 mm ADAPT Parasol 1200 A = \varnothing 125 mm ADAPT Parasol 1200 PF A = \varnothing 160 mm

Рис. 30. Контроллер, датчик давления и плинты подключения смонтированы на монтажной панели, которая поворачивается для облегчения доступа.

При монтаже, например, в подвесной гипсовой потолок это означает, что все элементы управления доступны из одного места на короткой стороне аппарата ADAPT Parasol.

Технические данные

Производительность-холод, общая, тах	2055 W
Производительность-тепло, вода, max Производительность-тепло, эл. max	2700 W 1000 W
Расход воздуха: Одномодульный аппарат Двухмодульный аппарат	7-34 l/s 7-85 l/s

Длина:

Одномодульный аппарат 584; 592; 598; 617; 623;

642; 667 mm

Двухмодульный аппарат 1184; 1192; 1198; 1242; 1248; 1292; 1342 mm

Ширина: 584; 592; 598; 617; 623;

642; 667 mm

Высота: ADAPT Parasol 600 220 mm ADAPT Parasol 600 PF 250 mm ADAPT Parasol 1200 220 mm ADAPT Parasol 1200 PF 240 mm

Размеры аппарата указаны с допуском ±2 mm

Таблица 1. Вес

ADAPT Parasol	Bec общий (kg)	Объем воды, холод (I)	Объем воды, тепло (I)
1192-A	25,6	1,4	Х
1192-B	29,7	1,4	0,9
1192-A-PF	28	1,4	Х
1192-B-PF	32	1,4	0,9
1192-X1	27,4	1,4	Х
1192-X2	27,7	1,4	Х
592-A	15,8	1,1	Х
592-B	16,3	1,1	0,2
592-A-PF	17,3	1,1	Х
592-B-PF	17,8	1,1	0,2

Выше приведены данные наиболее распространенных размеров ADAPT Parasol. Остальные варианты см. в программе ProSelect (www.swegon.com)

Вес указан без модуля датчиков (0,1 kg).

Рекомендуемые граничные значения

Давление системы

Рабочее давление	
теплообменника, тах	1600 кРа *
Испытательное давление	
теплообменника, тах	2400 κPa *

* Без смонтированных компонентов управления

Давление на форсунке 50-150 Ра

Рекомендуемое низшее давление на

форсунке в режиме обогрева, р. 70 Ра

Рекомендуемое низшее давление на

форсунке при выдвинутой вниз лицевой

панели (повышенная мощность) 70 Ра

Расход воды

Обеспечивает удаление воздуха из системы.

 Холодная вода, min
 0,030 l/s

 Горячая вода, min
 0,013 l/s

Изменения температуры воды (прямая/обратная)

 Холодная вода, увеличение
 2–5 K

 Горячая вода, снижение
 4–10 K

Разность температуры указывается в Kelvin (K).

Температура прямой воды

Холодная вода **
Горячая вода, макс. 60°C

** Температура холодной воды поддерживается на уровне, исключающем образование конденсата.

Обозначения

Р Производительность (W)

t₁ Температура первичного воздуха (°C), т.е. воздуха, подаваемого в аппарат

 $\mathbf{t}_{_{\!\scriptscriptstyle{\Gamma}}}$ Температура помещения (°C)

 $t_{_{m}}$ Средняя температура воды (°C)

 ΔT_{m} Разность температуры $t_{r}^{-}t_{m}(K)$, здесь - воздуха помещения и средней температуры воды

 $\Delta T_{_{_{\rm I}}}$ Разность температуры $t_{_{_{\rm T}}}$ $t_{_{_{\rm T}}}$ (K), здесь - воздуха первичного и помещения

 ΔT_{k} Разность температуры прямой и обратной

холодной воды (K)

ΔT, Разность температуры прямой и обратной

горячей воды (K) Скорость воды (m/s)

5 (11)

q Расход воды (I/s)

р Давление (Ра)

Δр Перепад давления (Pa)

Дополнительные индексы: k = охлаждение, v = обогрев, l = воздух, i = наладка/регулировка, korr = корректировка.

Перепад давления на форсунке

 $\Delta p_{_{\rm I}} = (q_{_{\rm I}}/k_{_{\rm DI}})^2$

 $\Delta p_{_{|}}$ Перепад давления на форсунке (Pa)

q. Расход первичного воздуха (I/s)

 $k_{_{pl}}$ Константа перепада давления для наладки/конфигурации форсунок,

см. Таблицы 2-5

Охлаждение

Стандарты

Производительность измерена в соответствии с EN 15116 и пересчитана для постоянного расхода воды согласно диаграммам 2 и 3.

Формулы расчета - охлаждение

Ниже представлены некоторые формулы для выбора модуля ADAPT Parasol. Значения для вычислений можно взять из таблиц.

Перепад давления охлаждающего теплообменника

 $\Delta p_k = (q_k / k_{nk})^2$

Δp Перепад давления в контуре охлаждающего теплообменника (kPa)

q Расход холодной воды (I/s), см. диаграмму 1

k_{pk} Константа перепада давления контура охлаждающего теплообменника, см. таблицы 2-5

Холодопроизводительность воздуха

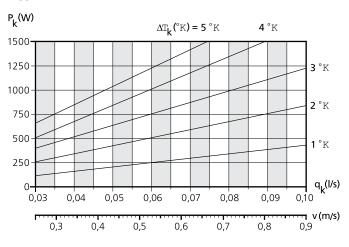
 $P_1 = 1.2 \cdot q_1 \cdot \Delta T_1$

Р₁ Охлаждающая мощность первичного воздуха (W)

q Расход первичного воздуха (I/s)

 $\Delta T_{_{1}}$ Разность температур первичного воздуха $(t_{_{1}})$ и воздуха помещения $(t_{_{2}})$ (K)

Холодопроизводительность воды


 $P_{\nu} = 4186 \cdot q_{\nu} \cdot \Delta T_{\nu}$

Р_к Охлаждающая мощность воды (W)

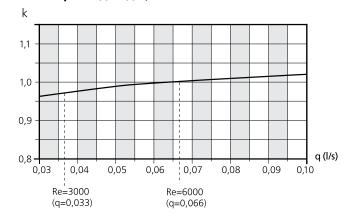
q, Расход холодной воды (I/s)

ΔT_k Разность температуры прямой и обратной холодной воды (K)

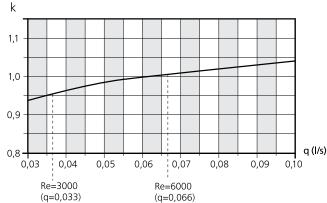
Диаграмма 1. Расход воды – холодопроизводительность

Скорректированная производительность-расход воды

Различный расход воды влияет на производительность аппарата. После проверки вычисленного по диаграммам 2 или 3 расхода воды, производительность, указанная в таблицах 2-5, может потребовать корректировки.


 $P_{korr} = k \cdot P_{k}$

Р_{когг} Скорректированная производительность (W)


k Поправочный коэффициент

Р, Холодопроизводительность воды

Диаграмма 2. Скорректированная производительность – расход воды, ADAPT Parasol 600

Диаграмма 3. Скорректированная производительность – расход воды, ADAPT Parasol 1200

Swegon^{*}

Диаграмма 4. Перепад давления - расход охлаждающей воды

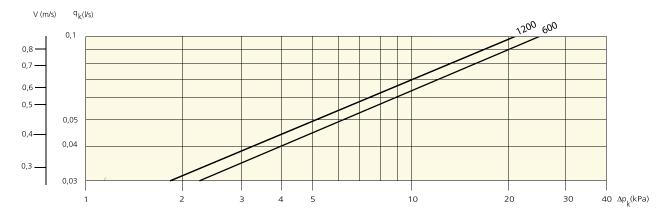


Таблица 2. Охлаждение. Выбор ADAPT Parasol 600

Давле- ние на форсунке	ние на гурация первичного шума форсунке форсунок воздуха dB(A)					Производительность первичного воздуха (W) при ∆Т _і				эльност З	и ΔT_{mk}	Константа перепада давления воздух/ вода			
(Pa)	1)	(I/s)	2)	6	8	10	12	6	7	8	9	10	11	\mathbf{k}_{pl}	k _{pk}
50	LLLL	7,2	<20	52	69	86	104	196	226	258	287	319	348	1,01	0,0200
	LHLH	13,4	<20	96	129	161	193	258	300	338	380	422	464	1,89	0,0200
	НННН	19,6	20	141	188	235	282	278	324	370	415	461	502	2,77	0,0200
70	LLLL	8,5	<20	61	82	102	122	228	266	304	338	376	413	1,01	0,0200
	LHLH	15,9	24	114	153	191	229	303	352	396	444	492	540	1,89	0,0200
	НННН	23,2	25	167	223	278	334	326	379	431	483	534	581	2,77	0,0200
90	LLLL	9,6	20	69	92	115	138	255	297	335	377	418	460	1,01	0,0200
	LHLH	18,0	28	130	173	216	259	333	386	439	492	544	592	1,89	0,0200
	НННН	26,3	29	189	252	316	379	363	420	477	534	590	636	2,77	0,0200

Таблица 3. Охлаждение. Выбор ADAPT Parasol 600 PF

Давление на фор- сунке (Ра)	Конфи- гурация форсунок 1)	Расход первичного воздуха (I/s)	Уровень шума dB(A)	Производительность первичного воздуха (W) при ΔТ,			Производительность воды (Вт) при ΔТ _{mk} 3)						Константа перепада давления воздух/вода		
		(1/3)	2)	6	8	10	12	6	7	8	9	10	11	k_{pl}	\mathbf{k}_{pk}
50	LLLL	22,1	23	212	265	318	159	214	251	285	323	360	395	3,13	0,023
	LHLH	27,9	27	268	335	402	201	243	281	323	366	408	447	3,95	0,023
	НННН	33,7	27	324	404	485	243	261	306	352	393	439	485	4,76	0,023
70	LLLL	26,2	28	252	314	377	189	263	308	352	392	437	481	3,13	0,023
	LHLH	33	31	317	396	475	238	288	337	386	436	485	534	3,95	0,023
	НННН	39,8	32	382	478	573	287	310	362	415	467	520	573	4,76	0,023
90	LLLL	29,7	31	285	356	428	214	301	351	395	445	494	543	3,13	0,023
	LHLH	37,5	35	360	450	540	270	325	380	434	488	543	597	3,95	0,023
	НННН	45,2	36	434	542	651	325	342	400	462	520	578	636	4,76	0,023

¹⁾ Для выбора иных конфигураций форсунок используйте расчетную программу ProSelect www.swegon.com

ВАЖНО! Полная холодопроизводительность - это сумма производительности воздуха и воды.

²⁾ Шумопоглощение помещения = 4dB

³⁾ Указанная производительность относится к выдвинутой вниз лицевой панели (для варианта высокой мощности). Для варианта нормальной мощности производительность по воде снижается на 5% для ADAPT Parasol 600 и на 10% для ADAPT Parasol 1200.

Производительность по воде может меняться в зависимости от монтажа и положения направляющих воздуха. Производительность по воздуху не меняется.

Таблица 4. Охлаждение. Выбор ADAPT Parasol 1200

Давление на фор- сунке (Ра)	Конфи- гурация форсунок	Расход первичного воздуха	Уровень шума dB(A)	Производительность первичного воздуха (W) при ΔΤ ₁			Производительность воды (W) при ΔT_{mk} 3)					Константа перепада дав- ления воздух/вода		
	1)	(I/s)	2)	6	8	10	12	6	7	8	9	10	k _{pl}	\mathbf{k}_{pk}
50	LLLL	13,0	<20	94	125	156	187	383	444	504	570	630	1,84	0,0220
	LHLH	29,4	22	212	282	353	423	499	580	653	733	806	4,16	0,0220
	НННН	35,6	26	256	342	427	513	520	596	678	753	827	5,04	0,0220
70	LLLL	15,4	20	111	148	185	222	432	500	574	641	708	1,84	0,0220
	LHLH	34,8	26	251	334	418	501	557	646	733	813	899	4,16	0,0220
	НННН	42,2	29	304	405	506	608	580	663	753	842	922	5,04	0,0220
90	LLLL	17,5	<20	126	168	210	252	471	544	624	696	768	1,84	0,0220
	LHLH	39,5	29	284	379	474	569	603	697	790	875	966	4,16	0,0220
	НННН	47,8	32	344	459	574	688	627	715	810	904	989	5,04	0,0220

Таблица 5. Охлаждение. Выбор ADAPT Parasol 1200 PF

Давление на фор- сунке (Ра)	Конфи- гурация форсунок	Расход первичного воздуха	Уровень шума dB(A)	Производительность первичного воздуха (W) при ∆Т,				Производительность воды (W) при ΔТ _{mk} 3)					Константа перепада давления воздух/вода		
	1)	(I/s)	2)	6	8	10	12	6	7	8	9	10	k _{pl}	\mathbf{k}_{pk}	
50 pa	LLLL	40,6	25	292	390	487	585	353	409	465	520	576	5,74	0,022	
	LHLH	53,8	25	387	516	646	775	393	460	522	583	644	7,61	0,022	
	НННН	59,6	26	429	572	715	858	411	475	538	601	664	8,42	0,022	
70 pa	LLLL	48,0	30	346	461	576	691	418	484	548	613	683	5,74	0,022	
	LHLH	63,7	30	459	612	764	917	468	539	611	688	759	7,61	0,022	
	НННН	70,4	32	507	676	845	1014	481	554	634	707	787	8,42	0,022	
90 pa	LLLL	54,5	33	392	523	654	785	469	541	612	690	760	5,74	0,022	
	LHLH	72,2	34	520	693	866	1040	521	600	685	763	848	7,61	0,022	
	НННН	79,9	36	575	767	959	1151	535	615	703	791	870	8,42	0,022	

¹⁾ Для выбора иных конфигураций форсунок используйте расчетную программу ProSelect www.swegon.com

3) Указанная производительность относится к выдвинутой вниз лицевой панели (для варианта высокой мощности). Для варианта нормальной мощности производительность по воде снижается на 5% для ADAPT Parasol 600 и на 10% для ADAPT Parasol 1200.

Производительность по воде может меняться в зависимости от монтажа и положения направляющих воздуха. Производительность по воздуху не меняется.

ВАЖНО! Полная холодопроизводительность - это сумма производительности воздуха и воды

Таблица 6. Производительность конвекции (первичный воздух отсутствует)

Длина аппарата (mm)	пр	и разности те		оизводитель оздуха помец	, ,	іей воды ΔТ _{тк}	(K)					
	6	6 7 8 9 10 11 12										
ADAPT Parasol 600	17	21	25	29	34	39	43					
ADAPT Parasol 1200	41	51	61	72	83	95	107					

²⁾ Шумопоглощение помещения = 4dB

Пример

Охлаждение

Секционное офисное помещение, размерами b x d x h = $2.4 \times 4 \times 2.7 \text{ m}$. Общая потребность в холоде 50 W/m^2 . Требуется ADAPT Parasol холодопроизводительностью $50 \times 2.4 \times 4 = 480 \text{ W}$. Расчетная температура помещения $(t_i) 24^{\circ}\text{C}$, температура холодной воды (прямая/обратная) $14/16^{\circ}\text{C}$ и температура первичного воздуха $(t_i) 16^{\circ}\text{C}$ дают следующие данные для выбора:

$$\Delta T_k = 2 \text{ K}$$

 $\Delta T_{mk} = 9 \text{ K}$

 $\Delta T = 8 \text{ K}$

Желаемый расход первичного воздуха помещения (q_i) принимается 16 l/s. Зональная заслонка обеспечивает постоянное давление в приточном воздуховоде =70Pa.

Уровень шума - не выше 30 dB(A).

Решение

Холодопроизводительность первичного воздуха рассчитывается по формуле: $P_i = 1, 2 \cdot \Delta T_i \cdot q_i$

 $P_1 = 1.2 \cdot 8 \cdot 16 = 154 \text{ W}$

Таким образом, комфортный модуль ADAPT Parasol должен обеспечить холодопроизводительность по воде 480 – 154 = 326 W.

Из Таблицы 2 видно, что ADAPT Parasol 592х 592 мм с конфигурацией форсунок LHLH и расходом первичного воздуха 16 l/s дает по воде 444 W. Этой охлаждающей мощности достаточно.

Такая конфигурация форсунок дает возможность снизить расход воздуха до 4,6 l/s в режиме отсутствия.

Альтернативная конфигурация форсунок НННН означает больше расход в режиме отсутствия (меньше экономия), но и большую холодопроизводительность и расход для, например, часто посещаемого офиса.

Холодная вода

Потребность в холоде по воде 326 W и данное в примере повышение температуры холодной воды $\Delta T_{\rm k}$ = 2 K дают возможность получить требуемое значение расхода воды. Из Диаграммы 1 получаем 0,039 l/s.

В Диаграмме 2 видно, что расход воды 0,039 l/s не обеспечивает полной турбулентности потока (область графика, где K<1), и должен быть скорректирован коэффициентом снижения производительности 0,97. Чтобы компенсировать это снижение, нужно повысить требуемую производительность аппарата: $P_k = 326 / 0,97 = 336 \text{ W}$. Новый расход воды из Диаграммы 1, $q_k = 0,040 \text{ l/s}$. Перепад давления вычисляется на основании значений расхода воды 0,040 l/s и константы перепада давления $k_{\text{ok}} = 0,020$, см. Таблицу 2.

Перепад давления теперь 4,0 kPa, см. Диаграмму 4.

Обогрев

Функция обогрева

Способность комфортного модуля Parasol быстро смешивать первичный воздух и воздух помещения, делает его пригодным не только для охлаждения, но и для обогрева помещений, что является хорошей альтернативой традиционным решениям с радиаторами обогрева - более дешевой и простой в монтаже, освобождающей, кроме того, стены фасада для более окупаемого использования. Так как ADAPT Parasol работает с относительно высоким давлением даже при низком расходе воздуха, он дает определенную мощность обогрева даже при длительном значительном снижении расхода, например, во время выходных дней.

Независимо от типа используемой системы обогрева, необходимо учитывать оперативную температуру в помещении. Для большинства людей комфортной температурой зимой является температура 22-24°C, при этом температура 22°C считается оптимальной. Это означает, что в помещении с холодным фасадом температура должна превышать 22°C, чтобы компенсировать холодное лучеиспускание от фасада. Разница между температурой помещения и оперативной температурой в зданиях нового строительства с хорошо изолированными фасадами и высоким качеством окон, очень мала. В старых зданиях с плохими окнами чаще всего необходима компенсация холодного лучеиспускания от фасада, которая требует более высокой температуры воздуха в помещении. Расчет потребности в тепле в зданиях разного типа можно произвести в программе ProClim Web, имеющейся на сайте Swegon.

Теплый воздух, подаваемый с потолка, вызывает температурные расслоения в помещении. При значении температуры прямой воды не выше 40°С эти расслоения незначительны, при 60°С они могут достигать 4К в зоне обслуживания. Здесь имеется ввиду помещение без внутренних теплонагрузок (т.е. какое-то время неипользуемое) в период его первоначального обогрева. При использовании помещения с влиянием освещения, компьютеров и людей, расслоение уменьшается либо полностью исчезает, в зависимости от потребности в тепле.

При применении ADAPT Parasol для обогрева, рекомендуется использовать выносной датчик температуры или выносной модуль датчиков.

Электрообогрев

В варианте ADAPT Parasol с электрообогревом используется ТЭН вместо горячей воды. ТЭН, установленный внутри труб теплообменника для горячей воды, передает тепло рециркуляционному воздуху, проходящему через теплообменник. Излучаемое тепло составляет лишь малую часть от общей производительности по теплу. ADAPT Parasol с электрообогревом поставляется в двух вариантах мощности, см. таблицу ниже.

Вариант	P (W)	Imax(A)
X1	500	2,2
X2	1000	4,3

Формулы расчета - обогрев, вода

Ниже приводятся некоторые формулы, дающие возможность выбрать необходимый размер аппарата. Значения для вычислений имеются в Таблицах 7-10.

Холодо- и теплопроизводительность воздуха

 $P_i = 1,2 \cdot q_i \cdot \Delta T_i$

Р_I Холодо- или теплопроизводительность воздуха (W)

q Расход первичного воздуха (I/s)

 $\Delta T_{_{1}}$ Разность температур воздуха первичного (t,) и помещения (t,) (K)

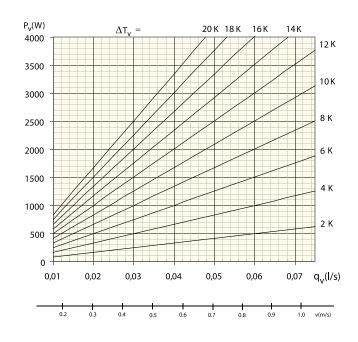
Перепад давления на теплообменнике нагрева $\Delta p_{_{\rm v}}$ = $(q_{_{\rm v}}$ / $k_{_{\rm ov}})^2$

Δр, Перепад давления на теплообменнике (kPa)

q_v Расход горячей воды (l/s), см. Диаграмму 6

k_{pv} Константа перепада давления на теплообменнике, см. Таблицы 7-10

Теплопроизводительность воды


 $P_v = 4186 \cdot q_v \cdot \Delta T_v$

Р, Теплопроизводительность воды (W)

q_v Расход горячей воды (I/s)

 $\Delta T_{_{V}}$ Разность температур прямой и обратной горячей воды (K)

Диаграмма 5. Расход воды - теплопроизводительность

Диаграмма 6. Перепад давления - расход горячей воды

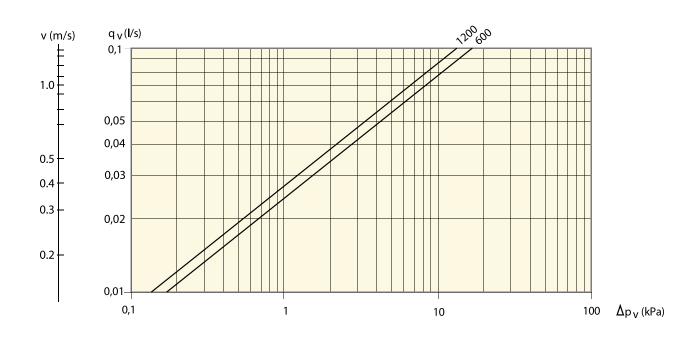


Таблица 7. Обогрев. Выбор ADAPT Parasol 600

Давление на	Конфигу- рация фор-	Расход первичного	первичного шума dB(A) 3)						Константа перепада давле- ния возд/вода		
форсунке р _і (Ра)	1)	воздуха (I/s)	2)	5	10	15	20	25	30	k _{pl}	k _{pv}
50	LLLL	7,2	<20	101	202	303	401	501	601	1,01	0,0241
	LHLH	13,4	<20	132	264	388	515	637	762	1,89	0,0241
	НННН	19,6	20	142	285	420	556	688	819	2,77	0,0241
70	LLLL	8,5	<20	116	235	350	466	583	698	1,01	0,0241
	LHLH	15,9	24	148	297	439	585	726	867	1,89	0,0241
	НННН	23,2	25	161	320	471	626	775	924	2,77	0,0241
90	LLLL	9,6	20	130	257	386	514	641	769	1,01	0,0241
	LHLH	18,0	28	163	323	480	635	788	943	1,89	0,0241
	НННН	26,3	29	173	347	513	677	841	1002	2,77	0,0241

Таблица 8. Обогрев. Выбор ADAPT Parasol 600 PF

Давление на	Конфигу- рация фор-	Расход первичного	Уровень шума dB(A)		Произво	дительнос З		Константа перепада давле- ния возд/вода			
форсунке р _і (Pa)	сунок 1)	воздуха (I/s)	2)	5	10	15	20	25	30	k _{pl}	k _{pv}
50	LLLL	22,1	23	108	221	339	456	575	696	3,13	0,018
	LHLH	27,9	27	109	233	360	494	631	770	3,95	0,018
	НННН	33,7	27	109	239	378	521	669	820	4,76	0,018
70	LLLL	26,2	28	126	255	390	527	665	804	3,13	0,018
	LHLH	33	31	129	269	414	562	713	867	3,95	0,018
	НННН	39,8	32	131	277	429	588	747	911	4,76	0,018
90	LLLL	29,7	31	137	282	429	581	731	882	3,13	0,018
	LHLH	37,5	35	142	294	453	611	775	939	3,95	0,018
	НННН	45,2	36	146	306	468	635	805	977	4,76	0,018

¹⁾ Для выбора иных конфигураций форсунок используйте расчетную программу ProSelect www.swegon.com

Производительность по воде может меняться в зависимости от монтажа и положения направляющих воздуха. Производительность по воздуху не меняется.

ВАЖНО! Полная теплопроизводительность - это сумма производительности воздуха и воды. Если температура первичного воздуха ниже температуры воздуха помещения, это оказывает негативное влияние на общую теплопроизводительность.

²⁾ Шумопоглощение помещения = 4dB

³⁾ Указанная производительность относится к выдвинутой вниз лицевой панели (для варианта высокой мощности).

Для варианта нормальной мощности производительность по воде снижается на 5% для ADAPT Parasol 600 и на 10% для ADAPT Parasol 1200.

Таблица 9. Обогрев. Выбор ADAPT Parasol 1200

Давление на	Конфигу- рация фор-	Расход первичного	Уровень шума dB(A)		Производительность воды (W) при ∆T 3)						Константа перепада давления возд/вода		
форсунке p _i (Pa)	сунок 1)	воздуха (I/s)	2)	5	10	15	20	25	30	k _{pl}	k _{pv}		
50	LLLL	13,0	<20	173	348	643	944	1117	1291	1,84	0,0273		
	LHLH	29,4	22	221	446	823	1207	1432	1653	4,16	0,0273		
	НННН	35,6	26	227	457	850	1243	1475	1706	5,04	0,0273		
70	LLLL	15,4	20	197	391	729	1063	1260	1453	1,84	0,0273		
	LHLH	34,8	26	247	494	919	1345	1592	1826	4,16	0,0273		
	НННН	42,2	29	253	507	948	1384	1642	1873	5,04	0,0273		
90	LLLL	17,5	<20	212	424	787	1156	1368	1580	1,84	0,0273		
	LHLH	39,5	29	263	532	990	1448	1717	1947	4,16	0,0273		
	НННН	47,8	32	274	544	1019	1487	1762	1994	5,04	0,0273		

Таблица 10. Обогрев. Выбор ADAPT Parasol 1200PF

Давление на	Конфигу- рация	Расход первичного	Уровень шума dB(A)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						Константа перепада давле- ния возд/вода		
форсунке р _і (Pa)	форсунок 1)	воздуха (I/s)	2)	5	10	15	20	25	30	k _{pl}	k _{pv}	
50	LLLL	40,6	25	268	511	743	975	1200	1422	5,74	0,027	
	LHLH	52,0	25	305	576	843	1100	1358	1608	7,61	0,027	
	НННН	59,6	26	315	599	874	1140	1406	1664	8,42	0,027	
70	LLLL	48,0	30	315	602	882	1157	1423	1691	5,74	0,027	
	LHLH	63,7	30	354	677	992	1302	1607	1879	7,61	0,027	
	НННН	70,4	32	369	702	1026	1344	1659	1933	8,42	0,027	
90	LLLL	54,5	33	351	673	986	1294	1593	1868	5,74	0,027	
	LHLH	72,2	34	392	758	1109	1450	1792	2063	7,61	0,027	
	НННН	79,9	36	402	778	1139	1501	1852	2119	8,42	0,027	

- 1) Для выбора иных конфигураций форсунок используйте расчетную программу ProSelect www.swegon.com
- 2) Шумопоглощение помещения = 4dB
- 3) Указанная производительность относится к выдвинутой вниз лицевой панели (для варианта высокой мощности).

Для варианта нормальной мощности производительность по воде снижается на значение между 5% и 12% для ADAPT Parasol 1200 PF. Производительность по воде может меняться в зависимости от монтажа и положения направляющих воздуха. Производительность по воздуху не меняется.

ВАЖНО! Полная теплопроизводительность - это сумма производительности воздуха и воды. Если температура первичного воздуха ниже температуры воздуха помещения, это оказывает негативное влияние на общую теплопроизводительность.

Пример Обогрев

В секционном офисе, размерами b x d x h = 2.4 x 4 x 2.7 m (в таком же помещении, как и в примере с охлаждением) имеется необходимость обогрева в 450 W Расход первичного воздуха должен быть таким же, как и летом: 16 l/s. Температура помещения (t_j) 22° C, температура горячей воды (подача/обратка) $45/39^{\circ}$ C и температура (t_j) первичного воздуха 20° C дают:

$$\Delta T_v = 6 \text{ K}$$
 $\Delta T_{mv} = 20 \text{ K}$
 $\Delta T_i = -2 \text{ K}$.

Решение

Расход первичного воздуха 16 l/s в сочетании с температурой первичного воздуха 20°C дают отрицательный вклад в теплопроизводительность: 1.2 х 16 х (-2) = - 38 W. Таким образом, потребность в теплопоизводительности горячей воды увеличивается до 450 + 38 = 488 W. Из Таблицы 7 при $\Delta T_{_{\rm mv}}=20$ K и расходе первичного воздуха 16 l/s получаем теплопроизводительность $P_{_{\rm v}}=585$ W одномодульного аппарата с конфигурацией форсунок LHLH, что удовлетворяет потребность в обогреве.

Горячая вода

При потребности в обогреве в 488 W и $\Delta T_{_{v}}$ = 6 K находим необходимый расход воды из Диаграммы 5: 0,019 l/s. Падение давления для горячей воды вычисляется, исходя из расхода воды 0,019 l/s и константы перепада давления $k_{_{pv}}$ = 0,0241, которая определяется из Таблицы 7. Тогда перепад давления составляет: $\Delta p_{_{v}}$ = (q, $V_{_{pv}}$) = (0,019 / 0,0241) = 0,62 kPa. Другим способом перепад давления можно определить из Диаграммы 6.

Электробогрев

Потребность в обогреве 488 W можно удовлетворить с помощью варианта ADAPT Parasol с электрообогревом X1, который дает 500 W теплопроизводительности.

Таблица 11. Переходной шум

Ниже приведены типовые значения $R_{\rm w}$ (переходного шума/помех) в офисах, оснащенных ADAPT Parasol, где перегородки достигают подвесного потолка (с хорошей шумоизоляцией). Предполагается, что перегородки имеют, как минимум, такое же значение $R_{\rm w}$, как в таблице.

ioi, kak munumym, takoe ke shahenne ii, kak b taohinge.							
Конструкция	Подвес- ной потолок R _w (дБ)	С ADAPT Parasol R _w (дБ)					
Легкий акустический подвесной потолок. Минеральная шерсть, перфорированная сталь/алюминиевые кассеты или растры	28	28					
Легкий акустический подвесной пото- лок. Минеральная шерсть, перфориро- ванная сталь/алюминиевый корпус или экран. Подвесной потолок, покрытый слоем минеральный ваты толщиной 50мм*.	36	36					
Легкий акустический подвесной потолок. Минеральная шерсть, перфорированная сталь/алюминиевый корпус или экран. Вертикальная панель с минеральной шерстью толщиной 100 мм, образующая звукоизоляцию между офисами*.	36	36					
Перфорированные штукатурные панели в системе Т- образной решетки. Акустическая изоляция на верхней стороне (25мм).	36	36					
Оштукатуренный подвесной потолок со звукоизоляцией на верхней стороне.	45	44					
*Покрытие: Rockwool 70 kg/m³, Gullfiber 5	0 kg/m³.						

Собственное затухание и концевое отражение

Ниже приведено собственное затухание ΔL (dB), включая концевое отражение.

Таблица 12. Собственное затухание ΔL (dB) ADAPT Parasol 600

Конфигурация	Октавная полоса (Hz)							
форсунок	63	125	250	500	1k	2k	4k	8k
LLLL	19	20	17	16	17	16	15	15
MMMM	17	18	15	14	15	14	13	13
НННН	15	16	13	12	13	12	11	11

Таблица 13. Собственное затухание ∆L (dB) ADAPT Parasol 600 PF

Конфигурация	Октавная полоса (Hz)							
форсунок	63	125	250	500	1k	2k	4k	8k
LLLL	19	20	17	16	17	16	15	15
MMMM	17	18	15	14	15	14	13	13
НННН	15	16	13	12	13	12	11	11

Таблица 14. Собственное затухание ΔL (dB) ADAPT Parasol 1200

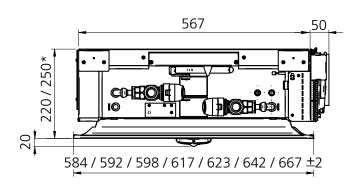
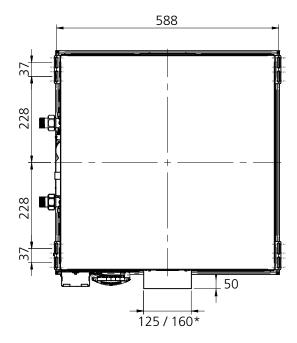
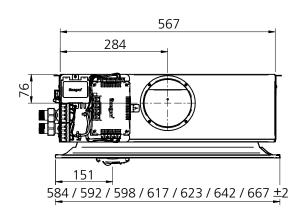

Конфигурация	Октавная полоса (Hz)							
форсунок	63	125	250	500	1k	2k	4k	8k
LLLL	18	19	16	15	16	15	14	14
MMMM	16	17	14	13	14	13	12	12
НННН	14	15	12	11	12	11	10	10

Таблица 15. Собственное затухание ΔL (dB) ADAPT Parasol 1200 PF


Конфигурация	Октавная полоса (Hz)							
форсунок	63	125	250	500	1k	2k	4k	8k
LLLL	19	15	11	7	7	8	13	16
MMMM	19	15	11	7	7	8	13	16
НННН	19	15	11	7	7	8	13	16


Габариты ADAPT PARASOL 600

Puc. 31. ADAPT Parasol 600, вид с торца размер со * (250mm) - только для модели 600PF

Puc. 32. ADAPT Parasol 600, вид сверху размер со * (160mm) - только для модели 600PF

Рис. 33. ADAPT Parasol 600, вид сбоку

Подключения воды ADAPT Parasol 600

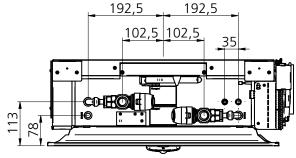


Рис. 34. ADAPT Parasol 600, подключения воды

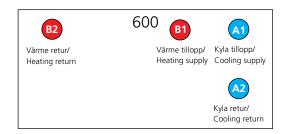
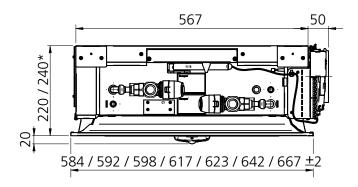


Рис. 35. Этикетка ADAPT Parasol 600

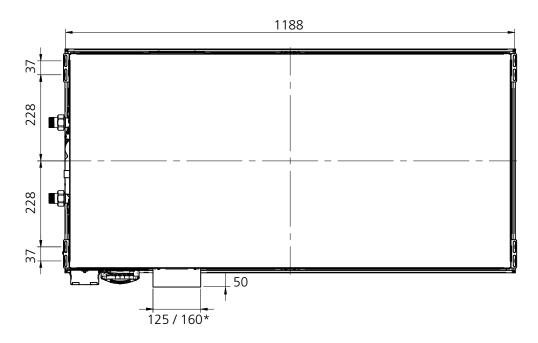
A1 = Прямая холодная вода Ø12x1,0 mm (Cu)

A2 = Обратная холодная вода Ø12x1,0 mm (Cu)

В1 = Прямая горячая вода \emptyset 12x1,0 mm (Cu)


B2 = Обратная горячая вода \emptyset 12x1,0 mm (Cu)

ВНИМАНИЕ! Для одномодульного аппарата важно подключить холодную воду к правильному соединительному патрубку. Направление потока воды имеет существенное значение для достижения полной охлаждающей производительности. Направление прямой и обратной воды указано стрелками на торце аппарата.


2013-05-14

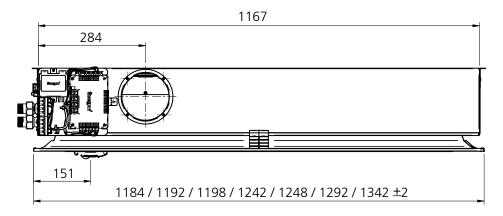

Габариты ADAPT PARASOL 1200

Рис. 36. ADAPT Parasol 1200, вид с торца размер со * (250mm)- только для модели 1200PF

Puc. 37. ADAPT Parasol 1200, вид сверху размер со * (160mm)- только для модели 1200PF

Рис. 38. ADAPT Parasol 1200, вид сбоку

Подключения воды ADAPT Parasol 1200

192,5 192,5

Рис. 39. ADAPT Parasol 1200, подключения воды

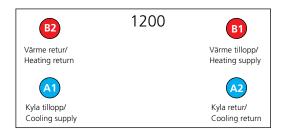
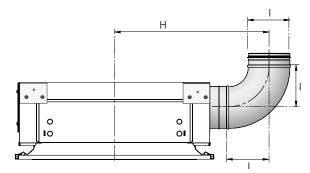


Рис. 40. Этикетка ADAPT Parasol 1200


A1 = Прямая холодная вода Ø12x1,0 mm (Cu)

A2 = Обратная холодная вода Ø12x1,0 mm (Cu)

В1 = Прямая горячая вода Ø12x1,0 mm (Cu)

B2 = Обратная горячая вода \emptyset 12x1,0 mm (Cu)

Подключение воздуховодов ADAPT Parasol 600/1200

Рис. 41. Монтаж с коленом, вид с торца Соединительная манжета воздуха SYST CA xxx-90

ADAPT Parasol 600	H = 460	I = 125
ADAPT Parasol 600 PF	H = 495	I = 160
ADAPT Parasol 1200	H = 460	I = 125
ADAPT Parasol 1200 PF	H = 495	I = 160

Принадлежности, заводской монтаж

Клапан с приводом SYST VEN115 с **LUNA AT** для обогрева и охлаждения.

См. отдельный каталог на нашем сайте.

Датчик CO, Detect Qa

Монтаж под лицевой панелью (скрыт) либо выносной

Датчик VOC Detect VOC

Дачтик качества воздуха, подключение к Modbus. Монтаж под лицевой панелью (скрыт) либо выносной

Трансформатор POWER ADAPT 20 VA

1-фазный защитный трансформатор Вх.напряжение 230 V 50-60 Hz

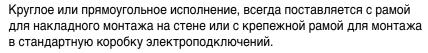
Вых.напряжение 24 V AC Мощность 20 VA Клас защиты IP 33

Вышестоящие принадлежности монтируются на заводе, а также могут быть заказаны отдельно.

Принадлежности

Трансформатор, SYST TS-1 72 VA

Защитный трансформатор с двойной изоляцией 230V AC/24 V AC См. отдельный каталог на нашем сайте.


Датчик температуры, CONDUCTOR T-TG

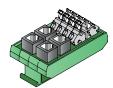
Выносной датчик температуры. Используется в случаях, когда температура помещения должна измеряться в ином месте, чем место размещения модуля датчиков или для измерения температуры для системы change-over.

Выносной модуль датчиков

Модуль с датчиками присутствия и температуры для монтажа на стене при необходимости дополнительного модуля датчиков в помещении (1 шт. всегда поставляется с ADAPT Parasol).

Кабель SYST KABEL RJ12 6-LED

Кабель для выносного модуля датчиков - подключение к контроллеру либо к другому модулю датчиков. Имеются разной длины.


Кабель CABLE CONVERTER USB-RJ12 (RS485)

Кабель со встроенным модемом для подключения контроллера к компьютеру (для работы, например, с SWICCT или ModbusPoll).

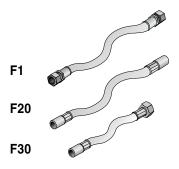
ADAPTER RJ12-WIRE

Адаптер для подключения кабеля с контактом RJ12 и кабеля со штифтами на концах. Может также использоваться как разветвитель RJ12.

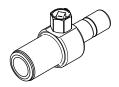
Держатель для карты-ключа SYST SENSO

Для гостиничного номера.

Монтажная деталь SYST MS M6


Для подвешивания аппарата. Включает резьбовые шпильки потолочные крепления и гайки для 4x шпилек.

Гибкие соединительные шланги SYST FH


Для простоты подключения водяных трубопроводов. Имеются разной длины. ВАЖНО! Шланги с обжимными кольцевыми муфтами требуют наличие ответных гильз в трубопроводе.

Имеются шланги: F1, F20 и F30 (см. спецификацию на стр. 36)

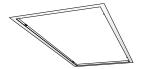
Спускной ниппель, push-on, SYST AR-12

Дополнение к гибким шлангам push-on.

Соединительный ниппель, воздух, SYST AD1

Соединительная деталь между ADAPT Parasol и воздуховодом. Два варианта сечения: Ø125 и Ø160 mm.

Соединительная муфта, воздух, SYST CA

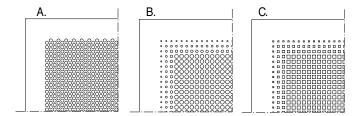

Колено 90°

Два варианта сечения: Ø125 и Ø160 mm.

Рама для гипсового потолка Parasol b T-FPB

Рама для аккуратного оформления ADAPT Parasol в отверстии гипсового потолка.

Инструмент для конфигурации форсунок SYST TORX


Узор перфорации

Лицевая панель блока может быть заказана с одним из трех узоров перфорации, что дает возможность подобрать их к различным деталям потолка, таким, как элементы освещения и вытяжные решетки для согласования прочих элементов интерьера. Для заказа других узоров перфорации связывайтесь с представителем компании Swegon в Вашей стране.

А. Лицевая панель стандарт PB Круглые отверстия в треугльном рисунке

В. Лицевая панель PD Круглые отверстия в квадратном рисунке с тональным переходом

С. Лицевая панель РЕ Квадратные отверстия в квадратном рисунке с тональным переходом

Спецификация

Тип потолка	Габариты лицевой панели аппарата (mm)				
Т-рама	модуль 600	модуль 1200			
c-c 600	592x592	1192x592			
c-c 600 SAS130/15	584x584	1184x584			
c-c 625	617x617	1242x617			
c-c 650	642x642	1292x642			
c-c 675	667x667	1342x667			

Clip in / кассетный лист	модуль 600	модуль 1200
c-c 600	598x598	1198x598
c-c 625	623x623	1248x623

Допуск ±2 mm

Функции Различные функциональные вари-

анты:

A = Охлаждение и вентиляция B = Охлаждение, обогрев и венти-

ляция

Х = Охлаждение водой, электрообо-

грев и вентиляция

ADC^{||} стандартно заводского мон-

тажа

Расход Одномодульный аппарат:

воздуха ADAPT Parasol 600

ADAPT Parasol 600 PF Двухмодульный аппарат: ADAPT Parasol 1200 ADAPT Parasol 1200 PF

(PF = особо высокий расход воз-

духа)

Настройки програмирования

Продукт может поставляться настроенным на заводе с определенными настройками программы. Например: расход воздуха в режиме присутствия и заданное значение

температуры.

Конфигурация форсунок

Варианты конфигурации каждой стороны аппарата: L, M, H

L = Низкий расход воздуха

М = Средний расход воздуха

Н = Высокий расход воздуха

Цвет Аппараты лакированы в стандарт-

ный белый цвет Swegon RAL 9010 блеск $30 \pm 6\%$

Коммуникация Modbus RTU

Спецификация

Границы ответственности

Swegon границы ответственности - это места подключений воздуховода, воды и системы управления (см. рис. 31-41).

- Специалист-сантехник (со стороны клиента) подключает систему трубопроводов к аппарату, удаляет воздух из системы и выполняет гидравлические испытания. Если автоматика помещения установлена на заводе, то обратку холодной или горячей воды следует подключить к клапану (наружная резьба DN 1/2").
- Специалист по вентиляции (со стороны клиента) подключает систему воздуховодов.
- Специалист-электрик (со стороны клиента) подключает электропитание (24В) и кабели коммуникации к соответствующим контактам клемной колодки.
 Максимальная площадь кабелей 2,5 mm². Для безопасности рекомендуется снабдить концы кабелей штифтами.

Ассортимент принадлежностей

Модуль датчиков

Привод клапана LUNA AT Kлапан SYST VEN115 Датчик CO_2 DETECT Qa

Датчик температуры CONDUCTOR T-TG Датчик VOC DETECT VOC Инструмент для конфигурации SYST TORX

инструмент для

форсунок

Трансформатор SYST TS-1, 72 VA Трансформатор POWER Aa, 20 VA

SYST CA

SYST FH F20

SYST FH F30

Соединительный ниппель, SYST AD1

воздух

Соединительная муфта,

воздух - 90°

Монтажная деталь SYST MS M6 Гибкий шланг с обжимными SYST FH F1

кольцевыми муфтами

Гибкий шланг с быстроразъемными муфтами (push-on)

Гибкий шланг с быстроразъем-

ной муфтой (push-on) с одного конца и накидной гайкой

конца и накидной гайкой G20ID с другого конца

Спускной ниппель, push-on SYST AR-12 Рама для гипсового потолка Parasol b T-FPB

Кабель (2xRJ12) SYST KABEL RJ12 6-LED. Кабель (USB+RJ12) CABLE CONVERTER USB-RJ12 (RS485)

Адаптер ADAPTER RJ12-WIRE

Держатель карты-ключа SYST SENSO

Альтернативный узор перфо- PD рации лицевой панели PE